Semiconductor devices and basic applications book

8.79  ·  4,981 ratings  ·  123 reviews
semiconductor devices and basic applications book

Principles of Semiconductor Devices

A semiconductor device is an electronic component that exploits the electronic properties of semiconductor material, principally silicon , germanium , and gallium arsenide , as well as organic semiconductors. Semiconductor devices have replaced vacuum tubes in most applications. They use electrical conduction in the solid state rather than the gaseous state or thermionic emission in a vacuum. Semiconductor devices are manufactured both as single discrete devices and as integrated circuits ICs , which consist of two or more devices—which can number in the billions—manufactured and interconnected on a single semiconductor wafer also called a substrate. Semiconductor materials are useful because their behavior can be easily manipulated by the deliberate addition of impurities, known as doping. Semiconductor conductivity can be controlled by the introduction of an electric or magnetic field, by exposure to light or heat, or by the mechanical deformation of a doped monocrystalline silicon grid; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs due to mobile or "free" electrons and electron holes , collectively known as charge carriers.
File Name: semiconductor devices and basic applications
Size: 67200 Kb
Published 16.12.2018

Animation - How a P N junction semiconductor works - forward reverse bias - diffusion drift current

Semiconductor Devices: Theory and Application cover image Read this book It progresses from basic diodes through bipolar and field effect transistors.

Semiconductor Devices: Theory and Application

Semiconductor Circuits: Theory, Design and Experiment details the information that are essential in designing and modifying circuits involving transistors and related semiconductor devices. The main concern of the book is the practical aspects of designing transistor circuits. The title first covers the physical theory of semiconductors, which includes the production of pn junctions, and the characteristics and equivalent circuits of transistors. Next, the selection covers the design of circuits, such as oscillator circuits, pulse circuits, and computing circuits. The last part of the text deals with experiment with semiconductors. The book will be of great use to students of electrical engineering. We are always looking for ways to improve customer experience on Elsevier.

chapter and author info

Course development and history. The content of these chapters are the pn-junction, bipolar transistor, field effect transistors, properties of semiconductor hetero junctions, quantum wells, and semiconductor lasers and photo-devices. In addition, the students should complete a literature study of their own choice. The individual project should be presented orally to the other students in the group. Semiconductor Physics and Applications, M.

Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor G4FET , perimeter gated single photon avalanche diode PG-SPAD and insulator-metal transistor IMT device with volatile memristance.


  1. Emmanuel B. says:

    Conditions of Use

  2. Marguerite D. says:

    You are currently using the site but have requested a page in the site.

Leave a Reply

Your email address will not be published. Required fields are marked *